

UPDM and SysML for Systems Engineers

Graham Bleakley, IBM graham.bleakley@uk.ibm.com

Agenda

This presentation will cover

- Describe how the views are related
- Identify the main viewpoints relevant for the Enterprise Architecture and Systems Engineering phases of development
- Show the patterns across the views and Viewpoints
- Discuss a generic workflow
- Points for discussion on UPDM/SysML modelling

DoDAF 2.0 Viewpoints

3

- Capability Viewpoint:- Capture the capabilities that the enterprise is expected to realise and shows how they are deployed to organizations (prefix CV)
- Operational Viewpoint: Contains the views required to describe the
 Operational and high level functional aspects of the architecture (prefix OV)
- •Service Viewpoint:- Captures the views required to specify of the Services (i.e. interface, no implementation) required to support the Operational objectives of the architecture (prefix SvcV)

DoDAF 2.0 Viewpoints

- Systems Viewpoint:-Captures the specification of the Systems that are required to be implemented or that already exist that help achieve the operational objectives (prefix SV)
- Project Viewpoint:- Maps the enterprises to the projects and organisations that will realise the capabilities through the development of systems and services (prefix PV)

DoDAF 2.0 Viewpoints

- Standards Viewpoint:-Contains all the information relating to the standards that constrain the other 3 viewpoints (prefix by StdV)
- •All Viewpoint:- Contains the summary information about the architecture being developed including the data dictionary (prefix by AV)

Model Element interaction Across Views

Separation of Elements and Views/Viewpoints

- Some elements seen in multiple views
- Some views ties the viewpoints together e.g. SV-5

NAV1_Summary NSV11 SystemDataModel NBV1 SysteminterfaceDescriptio NSV2 SystemCommunicationDescription NSV4_SystemFunctionalityDescription NSV10a_SystemRules NSV7_SystemQualityRequirementsDescript NEW Service Provision Logica/DataModel Physical DataMode Systems SystemConstraints NAV2_Dictionary CapabilityConfiguration NOV4_OrgRelationships Systeminterface NAV3a_ComplianceStatemen (ΝΕΝΕΣΦ)φληνικού με το μεταξιού με το μεταξιού με το μεταξιού με το μεταξιού μεταξιού μεταξιού μεταξιού μεταξι Επιπεριού μεταξιού μ InformationRequirements NOV1_HLOC NTV1_TechnicalStandards NOV5_OperationalActivityMode NSOV4_Services2OperationalActivityMap NTV3_StandardConfiguration NOV6a Operational Rules NSOV3_ServiceOrchestration NSOV2_ServiceDefinition NCV2_CapabilityTaxonomy Calpability ServiceConnections NSOV1_ServiceTaxono Capability Views Operational Views System Views Service Views Technical Views

© Copyright IBIVI Corporation 2012

Essential Views and model elements based upon Initial Guidelines for use, NAF 3 V1.0

View and Viewpoint interrelationshhips

- The Viewpoints are not independent but are heavily interrelated
- Each face of Cube represents a viewpoint
- Each window a separate view or product
- Model Elements internal to cube used by multiple views
- Views can act as
 - Filters on the information in the architecture (OV-3, SV-5)
 - Diagrams allowing you to create the information that populates the architecture (SV-1, OV-2)

Viewpoint relationships

UPDM DoDAF is a set of traceability matrices

- Systems and Services support and implement Operational elements
- Services expose capabilities (service as an interface)
- Operational elements (activities) map to capabilities
- Capabilities are delivered by Projects
- Systems and Services are the realized by projects
- Everything constrained by standards

These relationships are captured in the various matrix views

Enterprise View of UPDM DoDAF

Used by

- Planning
- JCIDS
- Operations
- Portfolio management

For

- Capability management
- Operations Planning
- Develop High level requirements for prime suppliers

Still need the

- All view,
- Standards view
- Parts of the Data and Information view

The Systems Engineering View of UPDM DoDAF

Used by

- Portfolio management
- Operations planning
- Defense Acquisition System
- Systems Engineering teams
 - In forces
 - Primes/Tier ones
- Provides requirements to engineering teams

Still need the

- All view,
- Standards view
- Parts of the Data and

Key relationships for Systems Engineering

 Resources exchanged through information and EnterprisePhase data exchanges **Exhibits** Resource is almost anything Capability in the architecture Exposes Trace to **Performs Supports Activity** Service Performer (Operational) Interface Exchanges **Implements** Produces/ Resources Consumes Exchanges **Performs Activity** System (System) **Activities** 11 © Copyright IBM Corporation 2012

Patterns in the Framework

Key View dependencies for systems engineering

High level workflow (core)

Develop capability views

- Enterprise visions
- Capability hierarchy and dependencies

Develop Operational views

- Behavior, structure,
- Derive data exchange matrices
- Trace back to capabilities

Develop systems/service views

- Behavior, structure,
- Derive data exchange matrices
- Trace back
 - Systems to operations that they implement
- Trace back Services to the
 - Operations they support
 - Capabilities they expose

The generic workflow applied to the OVs

The generic workflow applied to the OVs

- Handling requirements
- In UPDM requirements driven from the level above
- Non functional requirements captured as constraints
 - Also work with Parametric diagrams
- It is possible to import requirements into UPDM models and tie them to Capabilities
- 3 main options
- Keep SysML models as part of UPDM models
- Import parts of UPDM models directly into a SysML model
- Reference UPDM elements from SysML models
- Options as part of these are
- Embed SysML elements directly in the UPDM elements
 - Ties the elements too closely into UPDM but I think there will be issues
- Separate out SysML models and trace to UPDM elements
 - Keep to the patterns in UPDM re traceability to the upper levels
- 4 th option
- 18 Separate UPDM and SysML models and trace through third party tool (i.e. ��������)corporation 2012

- Keep SysML models as part of UPDM models
 - Models become very large and monolithic
 - Hard to maintain and manage

- Timport parts of UPDM models directly into a SysML model
 - Evolve the model with SysML elements
- End up with separate models
- Disconnect between the high level specification of a System in the UPDM model and the TSysML
- Issues with the need to maintain consistency between the views
- Issues with pushing more detail up into the UPDM views as there will then be inconsistency in the detail and you may lose relations/dependencies to the elements at the higher level
 - Interchange issue as you are replacing elements you may lose ownership of relationships (might be OK in the same tool, but XMI ?)
 - Need Diff-Merge capability for XMI ?

- Reference UPDM elements from SysML models
 - Maintain the consistency of the UPDM model
 - Maintain the patterns of the UPDM structure in the SysML model
 - Trace between SysML and UPDM easily
 - End up with a number of Branch SysML models that reflect the lower level system structure
 - Cannot use the UPDM elements as they are read only (Advantage)
- Initial proposal
 - Combination of taking UPDM models by reference and importing the lower levels of the UPDM architecture and removing UPDM stereotypes
 - Change to SysML elements
 - Trace back to reference elements
 - Gives the possibility of reuse and also shows the reference to original elements

Summary

- Brief review of Viewpoints
- How elements are related across the viewpoints
- Identification of patterns in the view points
- Generic Workflow
- UPDM and SysML